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Line Shapes in Gas Chromatography.
Il. Nonlinear Isotherms and Mass Transfer Kinetics in
Preparative Columns

DAVID J. WILSON

DEPARTMENT OF CHEMISTRY
VANDERBILT UNIVERSITY
NASHVILLE., TENNESSEE 37235

Abstract

The effects of nonlinear isotherms and mass transfer kinetics on the shapes of
bands in preparative gas chromatography are modeled by numerical integration
of the differential equations describing solute movement. Numerical dispersion,
intrinsic to the theoretical plate method, is greatly reduced by the use of
asymmetrical upwind algorithms for advection. Mass transfer rate effects are
taken into account by a time constant approach. The technique is readily used on
microcomputers.

INTRODUCTION

The calculation of line shapes in gas chromatography has been of
interest for many years, and is of particular interest in preparative
columns where heavy liquid loadings on the column packing and large
sample sizes make nonideal behavior a very common phenomenon.
Since the pertinent literature was reviewed in an earlier paper (1), we here
mention only those articles most directly relevant to our work.

Vink (2, 3) has used a mesh technique for solving the partial
differential equation governing line shapes; our approach here is similar.
Houghton took the effects of diffusion and nonequilibrium mass
transport into account by means of a perturbation method (4). Giddings
has developed a general method for line-shape calculations by means of
a stochastic approach (5). We examined the effect of the finite rate of
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mass transport between the moving and stationary phases by means of a
time-constant approach (6). Another paper of ours considered the effects
of velocity and diffusion constant variation along the column length, the
finite rate of mass transport, departures of the solute from Henry’s law
behavior, and finite sample injection time (7).

Of particular interest is the elegant paper on line shapes by Guiochon
and his coworkers (8). Their model, based on the solution of the
appropriate differential equation, permits them to account for both the
influence of the isotherm curvature at zero concentration and the
perturbation of the flow rate due to solute exchange between the mobile
and stationary phases. The model requires peak area, axial dispersion
coefficient, limit retentional time, and leaning coefficient. The last two
parameters are directly related to the slope and curvature of the isotherm
at the zero pressure limit. The method is good for low to moderate
column overloading. It takes kinetic effects into account by a global
dispersion factor, and neglects the kinetics of the adsorption-desorption
process.

In the model to be examined here, we deal with conditions of large
overload with nonlinear adsorption isotherms, and include the effect of
the finite rate of mass transfer in the adsorption-desorption process. The
nonlinearity of the equations dictates the numerical integration of the
partial differential equation describing the system. This is made difficult
by two factors. First, if the column is to be realistically efficient, a very
large number of theoretical transfer units will be required. This means
that one must numerically integrate a very large number of ordinary
differential equations forward in time. Since the stability of this
integration is determined by the requirement that vAr/Ax be <1, where
v = flow velocity and Ax = theoretical plate height, the allowed values of
At are also very small. This makes numerical integration a slow and
costly business.

Actually, the situation is even worse than indicated above. The second
factor adding to the difficulty of numerical integration methods comes
into play if one wishes to include the effects of the finite rate of solute
transport between phases and eliminate the assumption of local equi-
librium. The time constant t for this mass transport is quite short, and, if
one is to solve the coupled partial differential equations describing the
vapor and liquid phase concentrations of the solute, one must select
values of At which are small compared to this small time constant. At this
point one concludes that the outlook for numerical integration methods
is not bright. It is these difficulties we wish to address.

The large number of theoretical plates required to represent a
reasonably efficient column is closely related to the problem of numer-
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ical dispersion in the simple mesh approximation to the advection
term,

Tu= =2 (¢ (1)

where v = volumetric flow rate of gas at x
c{x,t) = solute concentration in the vapor phase

Leonard (9, 10) has analyzed in some detail the advantages of using so-
called asymmetrical upwind algorithms for modeling advection terms
with very markedly reduced numerical dispersion, and we have exploited
his suggestion in a number of applications (/, 11-13). The formulas used
to approximate the advection term in our differential equation,

om gl %) _9
or =45, (D ox ) " ax )
are
Tadv = (V/Ax)(cg.i—l - Cg,r') (3)
= (V/Ax)(—%cg.i—2 + 2cg.i»l - %Cg,i) (4)
= (V/Ax)(‘_llﬁcg,ivl + %Cg.i—l - %cg‘i - %Cg.H'l) (5)
= (V/Ax)(_(lmcg,i~2 + Cg.l—l - %Cg,i - %cg,i+l) (6)

where m(x.?) = moles of solute per unit length of column
v = linear velocity of vapor phase
A = cross-sectional area of column
D = axial dispersion constant
Ax = length of the compartments into which the column is
partitioned

Representing the advective term in Eq. (2) by Egs. (4), (5), or (6)
eliminates the interpretation of each compartment representing the
column as a theoretical plate, and results in drastically reduced
numerical dispersion, as shown earlier (/). This, in turn, permits a much
smaller number of compartments to be used in representing the column
than would be required by the theoretical plate model.

Numerical integration would still be of dubious feasibility, however, if
one were forced to use values of Ar dictated by the small size of the time
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constant in the mass transfer of solute between the vapor and liquid
phases. To deal with this we employ a modification of a method we used
earlier to get fast-computing models for activated carbon columns (/4)
and continuous-flow solvent sublation columns (/5). In any one com-
partment, one assumes an exponential decay of the liquid and vapor
concentrations toward their local equilibrium values during the time
increment Arz. The time constant for this decay can then be assigned on
the basis of the solute diffusion constant in the liquid phase and the
thickness of the liquid phase. If one numerically integrates the differen-
tial equations for ¢, and ¢, the solute concentration in the liquid phase,
directly, one is in essence assuming a linear change of the liquid and
vapor concentrations toward local equilibrium with time. If the time
increment At is too large, one overshoots local equilibrium disastrously.
With an exponential decay, on the other hand, overshoot is impossible no
matter how small the time constant.

In the following section we develop these ideas in more detail. This is
followed by a section on results obtained with this model, showing how
the line shapes depend on the various parameters in the model. These
runs were made on a Zenith-150 microcomputer with a standard 8088
microprocessor running at 4.77 MHz. The program was written in
BASICA and then compiled to give a fast-running machine language
program; interpreted BASIC is too slow to be practical.

ANALYSIS

We shall use the model for gas chromatograph operation illustrated in
Fig. 1. Initially we shall develop the local equilibrium theoretical plate
treatment. Then we shall modify this by replacing the theoretical plate
advection terms by one of three asymmetrical upwind algorithms
yielding reduced numerical dispersion. Lastly, we shall modify the
treatment to eliminate the assumption of local equilibrium, so that the
kinetics of mass transport between phases can be included in the
model.

We partition the column into N equal-sized compartments each of
length Ax and radius r(cm). Let the voids fraction of the column be v,,
and the volume fraction of the liquid phase in the column be v, Let the
volumetric flow rate of the carrier gas be v mL/min. Then we obtain

dm,-/d[ = V(Cg',;[ - Cg,,') (7)

for the equation describing advective motion in the column. Here, m, is
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the moles of solute in the ith compartment and ¢,; is the concentration of
solute in the ith compartment (mol/cm?). Let us assume the following
isotherm for the partitioning of the solute between the liquid and vapor
phases at equilibrium:

ac,;

1+ c;,/cg ®)

Cri =

Here ¢ may be positive (isotherm concave downward) or negative
(isotherm concave upward). Mass balance gives

m; = I/Icli + Vgcgi (9)
where

V,=nr*Ax -y, (10)

{
- | T L.
vapor phase<J— 2} C ,>I|qmd phase
t
3 . *
[]
4 F
¥
i—I; 4 } advection
—¥ = mass transport
1 ; B between phases
i+, F
¥
¥
N-2 F
1)
N-1,  F
L]
N | i
¥

F1G. 1. The model used to represent the column.
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V,=nr’Ax v, (11)

&

Solving Egs. (8) and (9) for ¢,, in terms of m, then yields

. m; — V) —aVie) + V(m; — Vs — aVied) + 4V com;
5 27, ’

LN (12)

The positive sign is taken if ¢; is positive, the negative sign if ¢} is
negative.

For the theoretical plate, local equilibrium model, Egs. (7) are
integrated forward in time numerically, with Egs. (12) being used to
calculate the changing values of the ¢,,. The value of ¢, is set equal to ¢;;
while sample injection is taking place; after this has occurred, it is set
equal to zero.

This approach results in quite wide peaks due to the numerical
dispersion intrinsic in the use of Eqs. (7) to model advection. We
therefore replace the right-hand side of Eqs. (7) by one of the asym-
metrical upwind algorithms, Egs. (4), (5), or (6). For illustration, we
choose Eq. (5), obtaining

dm 1 7 3 3
7;’ = V(~ gcg,i—l + gcg,i—l - g Coi ™ gcg.iJr]) (13)

We use Eq. (7) fori = 1 and N, since Eq. (13) requires nonexistent ¢,’s for
these values of i.

At this stage we have recovered Tamamushi’s work (/). It was found,
however, that use of Eq. (13) or its congeners (obtained tfrom Egs. 4 or 6)
under some circumstances resulted in more numerical instability than
was desired. The peak was preceeded and/or followed by one or more
wiggles which were obviously computational artifacts. This instability
was reduced by combining Eq. (13) with the numerically highly stable but
very dispersive Eq. (7), so that the differential equations representing
advection become

dm; 1 7 3 3
Tn: = V[b(_ gcg,i—z + gcg‘i—l - gcg.. - gcgnl)

(L= b)Yy — cg,,-)] (14)

[This device has proven effective in improving stability in the modeling
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of ion-exchange columns (/3).] Many of the results reported in the next
section were calculated using Egs. (12) and (14). This gives us a model
which includes 1) an isotherm which can show positive or negative
departures from Henry’s law, and 2) the effects of the finite duration of
the sample injection process. If one wishes to increase axial diffusion/
dispersion, one can do so either by decreasing b in Eq. (14) or by
decreasing N, the number of compartments into which the column is
partitioned. It would also be possible to include a term

AD
X; [C;:.i—l - 2cg,i + Cg‘i+1] (15)

in Eq. (14) to include dispersion explicitly, but there appears to be little to
be gained by this over what can be done by varying b and/or N.

The next problem to be addressed is that of including the effects of the
finite rate of mass transfer of solute between the liquid and vapor phases.
We assume that the decay of the concentrations toward their local
equilibrium values is exponential; that these, in the absence of advection,
would follow an equation of the form

c (1) = cgi(m;) + [cg,i(o) - C;.[(mi)] e (16)

where t is the time constant for the decay toward equilibrium by mass
transport between the liquid and vapor phases. Note that c(m;) is
calculated from Eq. (12).

We modify our treatment of advection as follows. (For brevity the
development is carried out with the theoretical plate advection algorithm;
at the end we patch in an asymmetrical upwind algorithm.)

dm/dt = v(cg,.y — ¢,)) 7

de v, !

&

Qi o Y (e = c,) (17)

We use Eqs. (7) and (17) to calculate the increments in the m; and the c,;
during the time interval Az. Note that Eq. (17) includes no terms involving
solute transport between phases. Therefore, the value of ¢,,(Ar) calculated
from Eq. (17) is not at equilibrium with the liquid phase; denote this value
by ) {At). Next, use Eq. (16) to allow ¢)(Ar) to decay toward equilibrium;
this yields

(A1) = coi(A1) + [cgi(m) — co(AD] - [1 — exp (—At/v)] (18)
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One integrates two sets of differential equations, Eq. (7) and Eq. (17), with
the derivatives differing only by a constant factor, 1/¥,. Then, each time
increment, the values of the c,; are allowed to relax toward the values they
would have if local equilibrium were achieved with m, moles of solute in
the ith compartment,i = 1,2, ..., N. Since the derivatives in Egs. (7) and
(17) are essentially identical and the exponential in Eq. (18) can be
calculated before entering the main loop in the numerical integration,
inclusion of mass transfer kinetics effects adds negligibly to the running
time of the computer program integrating the differential equations.

To decrease numerical dispersion, one then replaces the theoretical
plate advection algorithm in Egs. (7) and (17) by the linear combination
of algorithms used in Eq. (14). Also, the numerical integration was done
by a two-step predictor-corrector method, with the relaxation toward
equilibrium carried out with a factor 1 — exp (—2At/t) in the predictor
result and 1 —exp (—At/t) in the corrector result. The predictor-
corrector method used was of the form

Starter:
- dy
y*(Ar) = y(0) + E(O)At (19)
Predictor:
* - dy
y¥(t + Ar) = y(t — A + E(t) - 2At (20)
Corrector:
dy* dy ] At
+ A = —— - e
y(t ) =y() + [ o (t+ A + it ) > 21)

The method is described in Ralston and Wilf (16).

The mass transport time constant can be estimated as follows. Assume
that solute diffusion in the liquid phase is rate controlling, that the
thickness of the liquid phase is /, and that/ is sufficiently smaller than the
packing dimensions that planar geometry can be used. Then we have the
diffusion problem

0 2
a—‘t’ =D ?3762 (22)
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dc _
Sn=0 (23)
c(Lt) = ¢ (24)

This problem is readily solved by separation of variables, and yields

c(x,t) = ¢y + Zﬂ A, cos ([%x) -exp (—An) (25)
n=1

where
A, = [(2n — D)n/21}°D (26)

We set the time constant t equal to the reciprocal of the lowest nonzero
eigenvalue, A,, which gives

T = (2I/n)*/D (27)

as an estimate of the time constant. Note that this neglects any diffusion
effects in the gaseous boundary layer around a packing particle.

One can include the contribution from diffusion through the gaseous
boundary layer in the following way. See Fig. 2 for the geometry and
notation. The boundary conditions are as follows:

b C(b) =Co
t vapor phase
X boundary layer
a cla-8)=cla+8)
29x " F99x
liquid
0 % =0
solid support X

FiG. 2. Model for the kinetics of mass transport between phases.
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dc _
:97(0) =0
c(a - &) = Ke(a + 8), 50
[At equilibrium, ¢(x < a) = Kc(x > al

D,%?(a—ﬁ)=Dg%f(a+8), 50

C(b) = Cp

The diffusion equations in the two regions are

2

%=D’%}%’ 0 <x < a(Regionl)
2

%:Dg%g—, a <x < b (Regionll)

On taking Eq. (28) into account, it is easily shown that in Region I

c(x,t) = Z B, exp (—At) cos | —l})ix + K¢,
A 1

and in Region II we find

WILSON

(28)

(29)

(30)

31

(32)

(33)

(34)

c(x,t) = Z [CA cos | _7&_x + D, sin | Lx] exp (—At) + ¢, (35)
A Dg Dg

Fitting the boundary conditions at x = a gives

- A [ A . [A
1 —— = R —_
K Bkcos\/ D,a C, cos Dga + D, sin ga

from Eq. (29), and

(36)

A . f A Fn . [ X N [ A
—/ Esm EaBk= - D—gsm D—gaCx+ B;COS D—gan
(37)

from Eq. (30). Equation (31) yields
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[ A . A _
cos D, bC, + sin D, bD, =0 (38)

Nonzero solutions for these linear, homogeneous equations in B,, C,,
D,, require that the determinant of their coefficients vanishes. This yields,
after some reduction, the following equation for the eigenvalues

- A A A A A A

K' | -— [ = | —b—-a)— | — [ — [

1 cos D, a cos D, (b —a) D, sin D, a sin D,
b—-—a)=0 (39)

This equation must be solved numerically for A; we take as our time
constant t the reciprocal of the smallest nonzero value of A.

RESULTS

A program to compute this model was written in GW BASIC
(essentially IBM’s BASICA) and compiled. A representative run takes
about 20 min on a Zenith 150 microcomputer. In most runs N, the
number of compartments into which the column was partitioned, was set
equal to 100. The parameter values for a standard run are given in Table
1; the parameters differing from these values are listed in the captions of
the figures.

In Figs. 3 and 4 are shown two sets of runs, identical in all respects
except that one is made using the theoretical plate algorithm (Eq. 7, Fig.
3); the other, using our modified upwind algorithm (Eq. 17, Fig. 4) with
b = 1.0. It is immediately evident from the differences in the peak half-
widths that the upwind algorithms permit one to reduce numerical
dispersion very markedly below that resulting from the theoretical plate
model. In Fig. 4 we also see some evidence of instability of the advection
algorithm in the “wiggles” in the curves. These results are in agreement
with Tamamushi’s findings (7).

The effects of varying the sample size are shown in Figs. 5 and 6. In Fig.
5 the isotherm is of the Langmuir type, concave down, with ¢} > 0. We see
the expected distortion of the peak symmetry (tailing to the right) with
increasing sample size, as well as a shift to shorter retention times. Figure
6 shows peak shapes for various sample sizes when ¢) is negative, which
causes positive deviations from Henry’s law—an isotherm which is
concave upward. Increasing sample size results in increasing asymmetry
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TABLE 1
Parameters for the Standard Run
Column length, cm 200
Column diameter, cm 2
Column voids fraction 0.5
Column liquid fraction 0.05
Langmuir isotherm parameter a 25
Langmuir isotherm parameter co, mol/cm? 1073
Mass transfer time constant t, s 1073
Flow rate, cm’/min 100
Injection concentration, mol/cm? 1073
Duration of injection, min 0.1
Length of run, min 18
At, min 0.025
N 100
Upwind advection algorithm Eq. (5)
Fractional contribution of upwind advection algorithm, b 0.9
Fractional contribution of theoretical plate advection algorithm, 1 — b 0.1

sample size increases.

of the peak, with tailing to the left; the retention time is also increased as

The effect of increasing the parameter g in the adsorption isotherm is
illustrated in Fig. 7. Increasing a increases proportionately the solubility
of the solute in the stationary phase, so should produce a proportional
increase in retention time, as was found to be the case. The value of a
should be proportional to the liquid phase loading of the column; the
mass transfer time constant t should be proportional to the square of the

liquid phase loading, as seen from Eq. (27).

al xi07°
100
ol 50
25
0 1 1 1
7 10 min 13 6

F1G. 3. Peak shapes obtained with the theoretical plate advection algorithm, Eq. (7). N = 25,

50, 100; other parameters as in Table 1.
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g -5
10 XIO 100

25

I )|

7 IO min 13 TG

Fi1G. 4. Peak shapes obtained with a 4-point asymmetrical upwind algorithm for advection,
Eq. (17). N = 25, 50, 100; b = 0; other parameters as in Table 1.

Increasing the duration of the injection time while holding total
sample size constant causes the peaks to be broadened, as exhibited in
Fig. 8. Slow vaporization of a large sample in the injection block would
produce the same effect on peak shape.

The mass transfer time constant can be responsible for a good deal of
peak broadening if the thickness of the stationary phase layer is
sufficiently large, since t is proportional to the square of this thickness.
The extent of the broadening for various values of t is shown in Fig. 9.

In Fig. 10 we explore the mathematical stabilities of our three
asymmetrical upwind algorithms for the case where we have eliminated
any contribution of the theoretical plate algorithm. [In the previous runs
(except those in Figs. 3 and 4) we have included a 10% contribution from
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4fx1074
8r-x1073
ol 8. %1078
A
TN
0 " o .
0 A { —
4 %min IlO |l3

F1G. 5. Effect of sample size on peak shape with an isotherm showing negative departures
from Henry’s law. Injection concentrations = 1074 1073, 1072 mol/cm? right to left; other
parameters as in Table 1.

10 %1073
|Ol-x|O'4
2px1073
5_
5r
(s
O / B |
o Al i
0 1 XL-// L L A
L 1l 1 1 A
7 10 min 13 6

F1G. 6. Effect of sample size on peak shape with an isotherm showing positive departures
from Henry’s law. cg = ~0.01 mol/cm?; injection concentrations = 1073, 1072 10~ mol/cm?
left to right; other parameters as in Table 1.
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10 I3 min 16 19

F1G. 7. Effect of the isotherm parameter a on peak shape. a = 25,37.5, 50 (dimensionless) left
to right; other parameters as in Table 1.

lo}
IOF
10|x103
5_
5_
5-
O '
O 1
O 1 3
1 1 1 — 1
7 IO min 13 16

FiG. 8. Effect of injection time duration with constant sample size on peak shape. £;,,; = 0.1,
0.4, 0.8, 1.6 min; ¢;pj = 1073, 2.5 X 1074, 125 X 1074, 6.25 X 1073 mol/cm?; other parameters
as indicated in Table 1.
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8t x107° |

4+

0
1 1 1 J
7 10 min I3 16

F1G. 9. Effect of mass transfer time constant t on peak shape. T = 0.1, 0.5, 1, 2 s (top to
bottom); other parameters as in Table 1.

the theoretical plate algorithm to improve stability.] It is seen that the 3-
point algorithm, Eq. (4), shows the most instability (indicated by the size
of the spurious “wiggles” in the curve), and that the two 4-point
algorithms are very similar to each other in this regard.

We note that most of the runs presented here, for which N = 100 and
tmax = 18 min, took 20.4 min in compiled GW BASIC on our Zenith 150
microcomputer using a standard 8088 chip.

CONCLUSIONS

We conclude that it is possible to model the behavior of preparative gas
chromatograph columns operating under conditions of sample overload
and nonequilibrium mass transfer between the liquid and vapor phase,
and that this can be carried out in reasonable time periods (of the order
of 20 min per run) on a microcomputer using a compiled BASIC
program.
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12.%x1073
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8..
4L
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FiG. 10. Comparison of three asymmetrical upwind advection algorithms—their effects on
peak shape. In all cases b = 0 (no contribution from the theoretical plate algorithm). The
algorithms represented by Egs. (4), (5), and (6) are used. Other parameters as in Table 1.
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