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SEPARATION SCIENCE AND TECHNOLOGY, 21(9), pp. 887-903, 1986 

Line Shapes in Gas Chromatography. 
II. Nonlinear Isotherms and Mass Transfer Kinetics in 
Preparative Columns 

DAVID J. WILSON 
DEPARTMENT OF CHEMISTRY 
VANDERBILT UNIVERSITY 
NASHVILLE, TENNESSEE 37235 

Abstract 

The effects of nonlinear isotherms and mass transfer kinetics on the shapes of 
bands in preparative gas chromatography are modeled by numerical integration 
of the differential equations describing solute movement. Numerical dispersion, 
intrinsic to the theoretical plate method, is greatly reduced by the use of 
asymmetrical upwind algorithms for advection. Mass transfer rate effects are 
taken into account by a time constant approach. The technique is readily used on 
microcomputers. 

INTRODUCTION 

The calculation of line shapes in gas chromatography has been of 
interest for many years, and is of particular interest in preparative 
columns where heavy liquid loadings on the column packing and large 
sample sizes make nonideal behavior a very common phenomenon. 
Since the pertinent literature was reviewed in an earlier paper (I), we here 
mention only those articles most directly relevant to our work. 

Vink (2, 3)  has used a mesh technique for solving the partial 
differential equation governing line shapes; our approach here is similar. 
Houghton took the effects of diffusion and nonequilibrium mass 
transport into account by means of a perturbation method (4):Giddings 
has developed a general method for line-shape calculations by means of 
a stochastic approach (5). We examined the effect of the finite rate of 
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888 WILSON 

mass transport between the moving and stationary phases by means of a 
time-constant approach (6). Another paper of ours considered the effects 
of velocity and diffusion constant variation along the column length, the 
finite rate of mass transport, departures of the solute from Henry’s law 
behavior, and finite sample injection time (7 ) .  

Of particular interest is the elegant paper on line shapes by Guiochon 
and his coworkers (8). Their model, based on the solution of the 
appropriate differential equation, permits them to account for both the 
influence of the isotherm curvature at zero concentration and the 
perturbation of the flow rate due to solute exchange between the mobile 
and stationary phases. The model requires peak area, axial dispersion 
coefficient, limit retentional time, and leaning coefficient. The last two 
parameters are directly related to the slope and curvature of the isotherm 
at the zero pressure limit. The method is good for low to moderate 
column overloading. It takes kinetic effects into account by a global 
dispersion factor, and neglects the kinetics of the adsorption-desorption 
process. 

In the model to be examined here, we deal with conditions of large 
overload with nonlinear adsorption isotherms, and include the effect of 
the finite rate of mass transfer in the adsorption-desorption process. The 
nonlinearity of the equations dictates the numerical integration of the 
partial differential equation describing the system. This is made difficult 
by two factors. First, if the column is to be realistically efficient, a very 
large number of theoretical transfer units will be required. This means 
that one must numerically integrate a very large number of ordinary 
differential equations forward in time. Since the stability of this 
integration is determined by the requirement that vAtlAx be < 1, where 
v = flow velocity and Ax = theoretical plate height, the allowed values of 
At are also very small. This makes numerical integration a slow and 
costly business. 

Actually, the situation is even worse than indicated above. The second 
factor adding to the difficulty of numerical integration methods comes 
into play if one wishes to include the effects of the finite rate of solute 
transport between phases and eliminate the assumption of local equi- 
librium. The time constant ‘c for this mass transport is quite short, and, if 
one is to solve the coupled partial differential equations describing the 
vapor and liquid phase concentrations of the solute, one must select 
values of At which are small compared to this small time constant. At this 
point one concludes that the outlook for numerical integration methods 
is not bright. It is these difficulties we wish to address. 

The large number of theoretical plates required to represent a 
reasonably efficient column is closely related to the problem of numer- 
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ical dispersion in the simple mesh approximation to the advection 
term, 

where v = volumetric flow rate of gas at x 
c,(x,t) = solute concentration in the vapor phase 

Leonard (9, 10) has analyzed in some detail the advantages of using so- 
called asymmetrical upwind algorithms for modeling advection terms 
with very markedly reduced numerical dispersion, and we have exploited 
his suggestion in a number of applications (1, 11-13). The formulas used 
to approximate the advection term in our differential equation, 

- ( X , f )  d m  = A  - a D- ac - -((vc,) a 
at ax ( ax ) ax 

are 

where m(x.t) = moles of solute per unit length of column 
v = linear velocity of vapor phase 
A = cross-sectional area of column 
D = axial dispersion constant 
Ax = length of the compartments into which the column is 

partitioned 

Representing the advective term in Eq. (2) by Eqs. (4), (9, or  (6) 
eliminates the interpretation of each compartment representing the 
column as a theoretical plate, and results in drastically reduced 
numerical dispersion, as shown earlier (1). This, in turn, permits a much 
smaller number of compartments to be used in representing the column 
than would be required by the theoretical plate model. 

Numerical integration would still be of dubious feasibility, however, if 
one were forced to use values of At dictated by the small size of the time 
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890 WILSON 

constant in the mass transfer of solute between the vapor and liquid 
phases. To deal with this we employ a modification of a method we used 
earlier to get fast-computing models for activated carbon columns (14) 
and continuous-flow solvent sublation columns (15). In any one com- 
partment, one assumes an exponential decay of the liquid and vapor 
concentrations toward their local equilibrium values during the time 
increment At. The time constant for this decay can then be assigned on 
the basis of the solute diffusion constant in the liquid phase and the 
thickness of the liquid phase. If one numerically integrates the differen- 
tial equations for cg and c,, the solute concentration in the liquid phase, 
directly, one is in essence assuming a linear change of the liquid and 
vapor concentrations toward local equilibrium with time. If the time 
increment At is too large, one overshoots local equilibrium disastrously. 
With an exponential decay, on the other hand, overshoot is impossible no 
matter how small the time constant. 

In the following section we develop these ideas in more detail. This is 
followed by a section on results obtained with this model, showing how 
the line shapes depend on the various parameters in the model. These 
runs were made on a Zenith-150 microcomputer with a standard 8088 
microprocessor running at 4.77 MHz. The program was written in 
BASICA and then compiled to give a fast-running machine language 
program; interpreted BASIC is too slow to be practical. 

AN ALYS I s 

We shall use the model for gas chromatograph operation illustrated in 
Fig. 1. Initially we shall develop the local equilibrium theoretical plate 
treatment. Then we shall modify this by replacing the theoretical plate 
advection terms by one of three asymmetrical upwind algorithms 
yielding reduced numerical dispersion. Lastly, we shall modify the 
treatment to eliminate the assumption of local equilibrium, so that the 
kinetics of mass transport between phases can be included in the 
model. 

We partition the column into N equal-sized compartments each of 
length Ax and radius r(cm). Let the voids fraction of the column be vg, 
and the volume fraction of the liquid phase in the column be v,. Let the 
volumetric flow rate of the carrier gas be v mllmin. Then we obtain 

for the equation describing advective motion in the column. Here, m, is 
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LINE SHAPES IN GAS CHROMATOGRAPHY. II 891 

the moles of solute in the ith compartment and cn,i is the concentration of 
solute in the ith compartment (mol/cm3). Let us assume the following 
isotherm for the partitioning of the solute between the liquid and vapor 
phases at equilibrium: 

Here ci may be positive (isotherm concave downward) or negative 
(isotherm concave upward). Mass balance gives 

where 

vapor phase 

FIG. 1. The model used to represent the column. 
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V, = nr'Ax. v, 

Solving Eqs. (8) and (9) for ex, in terms of mi then yields 

i =  1 . 2  , . . . ,  N 

The positive sign is taken if c i  is positive, the negative sign if c: is 
negative. 

For the theoretical plate, local equilibrium model, Eqs. (7) are 
integrated forward in time numerically, with Eqs. (12) being used to 
calculate the changing values of the c,,. The value of cx,, is set equal to c,,, 
while sample injection is taking place; after this has occurred, it is set 
equal to zero. 

This approach results in quite wide peaks due to the numerical 
dispersion intrinsic in the use of Eqs. (7) to model advection. We 
therefore replace the right-hand side of Eqs. (7) by one of the asym- 
metrical upwind algorithms, Eqs. (4), (5 ) ,  or (6). For illustration, we 
choose Eq. (5 ) ,  obtaining 

We use Eq. (7) for i = I and N since Eq. (1 3 )  requires nonexistent cgB for 
these values of i. 

At this stage we have recovered Tamamushi's work ( I ) .  It was found, 
however. that use of Eq. (13) or its congeners (obtained from Eqs. 4 o r  6) 
under some circumstances resulted in more numerical instability than 
was desired. The peak was preceeded and/or followed by one or more 
wiggles which were obviously computational artifacts. This instability 
was reduced by combining Eq. (13) with the numerically highly stable but 
very dispersive Eq. (7), so that the differential equations representing 
advection become 

1 

[This device has proven effective in improving stability in the modeling 
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LINE SHAPES IN GAS CHROMATOGRAPHY. II 893 

of ion-exchange columns (14.1 Many of the results reported in the next 
section were calculated using Eqs. (12) and (14). This gives us a model 
which includes 1) an isotherm which can show positive or  negative 
departures from Henry's law, and 2) the effects of the finite duration of 
the sample injection process. If one wishes to increase axial diffusion/ 
dispersion, one can do so either by decreasing b in Eq. (14) or  by 
decreasing N ,  the number of compartments into which the column is 
partitioned. It would also be possible to include a term 

in Eq. (14) to include dispersion explicitly, but there appears to be little to 
be gained by this over what can be done by varying b and/or iY 

The next problem to be addressed is that of including the effects of the 
finite rate of mass transfer of solute between the liquid and vapor phases. 
We assume that the decay of the concentrations toward their local 
equilibrium values is exponential; that these, in the absence of advection, 
would follow a n  equation of the form 

where t is the time constant for the decay toward equilibrium by mass 
transport between the liquid and vapor phases. Note that c;,(m,) is 
calculated from Eq. (12). 

We modify our treatment of advection as follows. (For brevity the 
development is carried out with the theoretical plate advection algorithm; 
at the end we patch in an asymmetrical upwind algorithm.) 

dmildt = v(cg,+, - cg,J (7) 

We use Eqs. (7) and (17) to calculate the increments in the mi and the c8, 
during the time interval At. Note that Eq. (17) includes no terms involving 
solute transport between phases. Therefore, the value of c, , (At)  calculated 
from Eq. (17) is not at equilibrium with the liquid phase; denote this value 
by c;,,(At). Next, use Eq. (16) to allow &At) to decay toward equilibrium; 
this yields 
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894 WILSON 

One integrates two sets of differential equations, Eq. (7) and Eq. (17), with 
the derivatives differing only by a constant factor, l/&. Then, each time 
increment, the values of the cgi are allowed to relax toward the values they 
would have if local equilibrium were achieved with mi moles of solute in 
the ith compartment, i = 1,2 , .  . . , N. Since the derivatives in Eqs. (7) and 
(17) are essentially identical and the exponential in Eq. (18) can be 
calculated before entering the main loop in the numerical integration, 
inclusion of mass transfer kinetics effects adds negligibly to the running 
time of the computer program integrating the differential equations. 

To decrease numerical dispersion, one then replaces the theoretical 
plate advection algorithm in Eqs. (7) and (17) by the linear combination 
of algorithms used in Eq. (14). Also, the numerical integration was done 
by a two-step predictor-corrector method, with the relaxation toward 
equilibrium carried out with a factor 1 - exp (-2Atlt) in the predictor 
result and 1 - exp (-A~/T) in the corrector result. The predictor- 
corrector method used was of the form 

Starter: 

y * ( A t )  = y ( 0 )  + - dY (0)At 
dt  

Predictor: 

y*( t  + At) = y ( t  - At) + - dY ( t )  e2At 
dt 

Corrector: 

~ ( t  + At) = ~ ( t )  + (21) dt 

The method is described in Ralston and Wilf (26). 
The mass transport time constant can be estimated as follows. Assume 

that solute diffusion in the liquid phase is rate controlling, that the 
thickness of the liquid phase is 1, and that 1 is sufficiently smaller than the 
packing dimensions that planar geometry can be used. Then we have the 
diffusion problem 
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b 

t 
X 

c(l,t) = co (24) 

This problem is readily solved by separation of variables, and yields 

C(b) = co 

vapor phase 
boundary layer 

where 

We set the time constant t equal to the reciprocal of the lowest nonzero 
eigenvalue, hl, which gives 

‘c = (2l /n)*/D (27) 

as an estimate of the time constant. Note that this neglects any diffusion 
effects in the gaseous boundary layer around a packing particle. 

One can include the contribution from diffusion through the gaseous 
boundary layer in the following way. See Fig. 2 for the geometry and 
notation. The boundary conditions are as follows: 

liquid 

0 

FIG. 2. Model for the kinetics of mass transport between phases. 
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896 WILSON 

(28) 

c(a - 6) = Kc(a + S), 6-0 (29) 

ac 
x(0) = 0 

[At equilibrium, c(x < a )  = Kc(x > a]  

(30) 

c(b) = Co (31) 

ac ac 
at g at 

D, - ( a  - 6) = D - ( a  + 6), 6-0 

The diffusion equations in the two regions are 

- = D , v 9  a2c 0 < x < a (Region I) (32) 
ac 
at 

&=Dg-- ,  a 2c a < x < b ( R e g i o n I I )  
d t  a t 2  

(33) 

On taking Eq. (28) into account, it is easily shown that in Region I 

(34) 
h 

and in Region I1 we find 

Fitting the boundary conditions at x = a gives 

from Eq. (29), and 

- /-$ sin aB, = - sin aC, + cos /$ aD, 

(37) 

from Eq. (30). Equation (31) yields 
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cos E b C ,  + s i n E b D ,  = 0 (38) 

Nonzero solutions for these linear, homogeneous equations in Bh, C,, 
D,, require that the determinant of their coefficients vanishes. This yields, 
after some reduction, the following equation for the eigenvalues 

(b - a )  = 0 (39) 

This equation must be solved numerically for h; we take as our time 
constant ‘I: the reciprocal of the smallest nonzero value of h. 

RESULTS 

A program to compute this model was written in GW BASIC 
(essentially IBM’s BASICA) and compiled. A representative run takes 
about 20 min on a Zenith 150 microcomputer. In most runs N ,  the 
number of compartments into which the column was partitioned, was set 
equal to 100. The parameter values for a standard run are given in Table 
1; the parameters differing from these values are listed in the captions of 
the figures. 

In Figs. 3 and 4 are shown two sets of runs, identical in all respects 
except that one is made using the theoretical plate algorithm (Eq. 7, Fig. 
3); the other, using our modified upwind algorithm (Eq. 17, Fig. 4) with 
b = 1.0. It is immediately evident from the differences in the peak half- 
widths that the upwind algorithms permit one to reduce numerical 
dispersion very markedly below that resulting from the theoretical plate 
model. In Fig. 4 we also see some evidence of instability of the advection 
algorithm in the “wiggles” in the curves. These results are in agreement 
with Tamamushi’s findings ( I ) .  

The effects of varying the sample size are shown in Figs. 5 and 6. In Fig. 
5 the isotherm is of the Langmuir type, concave down, with c i  > 0. We see 
the expected distortion of the peak symmetry (tailing to the right) with 
increasing sample size, as well as a shift to shorter retention times. Figure 
6 shows peak shapes for various sample sizes when ci is negative, which 
causes positive deviations from Henry’s law-an isotherm which is 
concave upward. Increasing sample size results in increasing asymmetry 
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898 WILSON 

TABLE 1 
Parameters for the Standard Run 

Column length, cm 
Column diameter, cm 
Column voids fraction 
Column liquid fraction 
Langmuir isotherm parameter a 
Langmuir isotherm parameter c,", mol/cm3 
Mass transfer time constant 5, s 
Flow rate, cm3/min 
Injection concentration, mol/cm3 
Duration of injection, min 
Length of run, min 
At, min 
N 
Upwind advection algorithm 
Fractional contribution of upwind advection algorithm, b 
Fractional contribution of theoretical plate advection algorithm, 1 - b 

200 
2 
0.5 
0.05 
25 

10-3 

10-3 
100 

0.1 
18 
0.025 
100 
Eq. ( 5 )  
0.9 
0.1 

of the peak, with tailing to the left; the retention time is also increased as 
sample size increases. 

The effect of increasing the parameter a in the adsorption isotherm is 
illustrated in Fig. 7. Increasing a increases proportionately the solubility 
of the solute in the stationary phase, so should produce a proportional 
increase in retention time, as was found to be the case. The value of a 
should be proportional to the liquid phase loading of the column; the 
mass transfer time constant T: should be proportional to the square of the 
liquid phase loading, as seen from Eq. (27). 

I 

7 10 min 13 16 

FIG. 3. Peak shapes obtained with the theoretical plate advection algorithm, Eq. (7). N = 25, 
50, 100; other parameters as in Table 1. 
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I I 1 I 

7 10 min 13 16 

FIG. 4. Peak shapes obtained with a 4-point asymmetrical upwind algorithm for advection, 
Eq. (17). N = 25, 50, 100; b = 0; other parameters as in Table 1. 

Increasing the duration of the injection time while holding total 
sample size constant causes the peaks to be broadened, as exhibited in 
Fig. 8. Slow vaporization of a large sample in the injection block would 
produce the same effect on peak shape. 

The mass transfer time constant can be responsible for a good deal of 
peak broadening if the thickness of the stationary phase layer is 
sufficiently large, since t is proportional to the square of this thickness. 
The extent of the broadening for various values o f t  is shown in Fig. 9. 

In Fig. 10 we explore the mathematical stabilities of our three 
asymmetrical upwind algorithms for the case where we have eliminated 
any contribution of the theoretical plate algorithm. [In the previous runs 
(except those in Figs. 3 and 4) we have included a 10% contribution from 
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x I O - ~  A 

4-  

I 

I 

W 

4 7 min 10 13 

FIG. 5 .  Effect of sample size on peak shape with an isotherm showing negative departures 
from Henry’s law. Injection concentrations = lo-’ mol/cm3 right to left; other 

parameters as in Table 1. 

I I I I 

7 10 min 13 16 

FIG. 6. Effect of sample size on peak shape with an isotherm showing positive departures 
from Henry’s 1aw.c; = -0.01 mol/cm3; injection concentrations = lo-*, lo-’ mol/cm3 

left to right; other parameters as in Table 1. 
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8 x I O - ~  

1 

FIG. 7. Effect of the isotherm parameter (I on peak shape. a = 25,37.5,50 (dimensionless) left 
to right; other parameters as in Table I .  

10 - 

5 

.8 
n 1.6 

I 1 I I 

13 16 7 10 min 

FIG. 8. Effect of injection time duration with constant sample size on peak shape. rin; = 0.1, 
0.4,0.8, 1.6 min; qn; = 2.5 X 1.25 X 6.25 X mol/crn3; other parameters 

as indicated in Table 1. 
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902 WILSON 

7 10 rnin 13 16 
FIG. 9. Effect of mass transfer time constant T on peak shape. T = 0.1, 0.5, 1, 2 s (top to 

bottom); other parameters as in Table 1. 

the theoretical plate algorithm to improve stability.] It is seen that the 3- 
point algorithm, Eq. (4), shows the most instability (indicated by the size 
of the spurious “wiggles” in the curve), and that the two 4-point 
algorithms are very similar to each other in this regard. 

We note that most of the runs presented here, for which N = 100 and 
t,,, = 18 min, took 20.4 min in compiled GW BASIC on our Zenith 150 
microcomputer using a standard 8088 chip. 

CONCLUSIONS 

We conclude that it is possible to model the behavior of preparative gas 
chromatograph columns operating under conditions of sample overload 
and nonequilibrium mass transfer between the liquid and vapor phase, 
and that this can be carried out in reasonable time periods (of the order 
of 20 min per run) on a microcomputer using a compiled BASIC 
program. 
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7 10 min 13 16 
FIG. 10. Comparison of three asymmetrical upwind advection algorithms-their effects on 
peak shape. In all cases b = 0 (no contribution from the theoretical plate algorithm). The 
algorithms represented by Eqs. (4), (9, and (6) are used. Other parameters as in Table 1. 
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